纳米技术的进展目前受GHz范围内的电子开关速度严重限制。提出了各种想法,即使用可以实现Petahertz转换的单周光学脉冲。Rybka等。 证明了等离子纳米电路中电子电流的连贯的光波控制[1]。 这是Keathley等人扩展的。 从金纳米antennas [2]到光发射。 Hommelhoff和Ref中的同事报告了光场驱动的真实和纯载体。 [3],他还证明了电子相关效应在超快光发射中的重要作用[4]。 subfemtsecond灯驱动的电荷动力学在参考文献中进行了。 [5]和[6]。 进步的第二个方向是利用降低尺寸的新型量子材料的潜力,例如石墨烯的单层或过渡金属二核苷(TMDC)。 他们提供了非常广泛的电子和光学特性,包括强烈的激子效应[7-11]。 当系统尺寸进一步降低到只有几纳米时,自由的额外自由会出现,而单层簇的形状也有所不同。 特别有承诺的候选者是石墨烯或TMDC的纳米群体,石墨烯纳米纤维(GNR)[12-15]和纳米仪[16]。Rybka等。证明了等离子纳米电路中电子电流的连贯的光波控制[1]。这是Keathley等人扩展的。从金纳米antennas [2]到光发射。 Hommelhoff和Ref中的同事报告了光场驱动的真实和纯载体。 [3],他还证明了电子相关效应在超快光发射中的重要作用[4]。 subfemtsecond灯驱动的电荷动力学在参考文献中进行了。 [5]和[6]。 进步的第二个方向是利用降低尺寸的新型量子材料的潜力,例如石墨烯的单层或过渡金属二核苷(TMDC)。 他们提供了非常广泛的电子和光学特性,包括强烈的激子效应[7-11]。 当系统尺寸进一步降低到只有几纳米时,自由的额外自由会出现,而单层簇的形状也有所不同。 特别有承诺的候选者是石墨烯或TMDC的纳米群体,石墨烯纳米纤维(GNR)[12-15]和纳米仪[16]。从金纳米antennas [2]到光发射。光场驱动的真实和纯载体。[3],他还证明了电子相关效应在超快光发射中的重要作用[4]。subfemtsecond灯驱动的电荷动力学在参考文献中进行了。[5]和[6]。进步的第二个方向是利用降低尺寸的新型量子材料的潜力,例如石墨烯的单层或过渡金属二核苷(TMDC)。他们提供了非常广泛的电子和光学特性,包括强烈的激子效应[7-11]。当系统尺寸进一步降低到只有几纳米时,自由的额外自由会出现,而单层簇的形状也有所不同。特别有承诺的候选者是石墨烯或TMDC的纳米群体,石墨烯纳米纤维(GNR)[12-15]和纳米仪[16]。
主要关键词
![arxiv:2502.10576v1 [cond-mat.str-el] 2025年2月14日PDF文件第1页](/bimg/3/382205e3d1708e3214b41a9d853054e60ed1e3a1.webp)
![arxiv:2502.10576v1 [cond-mat.str-el] 2025年2月14日PDF文件第2页](/bimg/4/416078984e3f31e4ae2943956eb5ed0edac02d1c.webp)
![arxiv:2502.10576v1 [cond-mat.str-el] 2025年2月14日PDF文件第3页](/bimg/7/7f3489a33ca76f14e466fd038f6fc8c137060d4c.webp)
![arxiv:2502.10576v1 [cond-mat.str-el] 2025年2月14日PDF文件第4页](/bimg/d/d9fe20e2b16dfee7d4b43292c4122798099ec3ac.webp)
![arxiv:2502.10576v1 [cond-mat.str-el] 2025年2月14日PDF文件第5页](/bimg/1/1fee21508486f0057762479d6f1bcd4f2233c563.webp)
